
An I�O System for Mach ���

Alessandro Forin

David Golub

Brian Bershad

faf�dbg�bershadg�cs�cmu�edu
School of Computer Science

Carnegie Mellon University
���� Forbes Avenue Pittsburgh� PA �����

Abstract

The Mach ��� I�O system represents a radical departure from its predecessor � Mach ����
which relied on the BSD Unix model of device management� The I�O interface in Mach ��� sup	
ports device drivers that are largely device�independent� implemented at user	level� and location	
independent� Our approach to device management signi
cantly reduces the size of the kernel�s
machine	dependent code� enables us to reduce the length of the I�O path� and permits us to
transparently manage remote devices on non	shared memory multiprocessor architectures such
as the Hypercube� This paper describes the structure and performance of Mach�s I�O system�

�� Introduction

This paper describes the design of the I�O system for the Mach ��� kernel �Rashid et al� ���� Mach	s
I�O system is novel in several respects� First
 it supports the notion of �device independent� device
drivers� The I�O system separates out generic driver code common to a class of devices such as a
screen
 an Ethernet controller
 or a disk
 from code which is only dependent on the device controller
chip itself
 and from the code which is speci
c to a given processor architecture� Second
 the
Mach I�O system supports user�level device management of mapped devices
 enabling application
programs
 such as an operating system server
 to directly control device activity� Finally
 the Mach
kernel provides for location�transparent device management which can be accessed through Mach	s
interprocessor communication �IPC� facilities�

���� Device Management for Small�Kernel Operating Systems

Mach ��� is an operating system kernel which is intended to be freely portable across a large number
of processor architectures
 o�er network transparency
 support e�ciently a variety of operating
systems implemented as user�level applications
 and provide a scheduling interface suitable for the
needs of concurrent
 Real�Time and parallel programs�

This research was sponsored in part by The Defense Advanced Research Projects Agency� InformationScience and
TechnologyO�ce� under the title �Research on Parallel Computing�� ARPA Order No� ����� issued by DARPA	CMO
under Contract MDA
���
��C����
�



Previous versions of the Mach ��� I�O system made it di�cult for us to meet these goals� We
describe why this was so
 and how the new I�O architecture addresses the problems
 in the rest of
the introduction�

A Smaller Kernel

The Mach ��� kernel had originally inherited the I�O management structure of Mach ���
 which
in turn derived its I�O system from BSD UNIX� Under BSD
 devices could only be described as
character�oriented or block�oriented devices� This gross characterization made it di�cult to share
code across functionally equivalent devices which happened to exist on di�erent system platforms�
The I�O system simply had no structure to allow similar devices
 for example
 a monochrome and
a color display
 to share code
 even though the functions provided by the similar devices are nearly
identical� We tried
 whenever possible
 to use the vendor�supplied device drivers when porting Mach
to a new system architecture� While this could sometimes reduce the time to port
 it resulted in
a large amount of nearly duplicated code within the kernel because one vendor	s interpretation of
how best to drive a device di�ered from another� Since the drivers were not just device
 but also
processor dependent
 we had no easy way to exploit the similarities� Worse
 the drivers from the
vendors themselves were nearly always �cloned� from a pre�existing version that handled a similar
device
 resulting in even more code duplication�

Device�independent device drivers decrease the amount of Mach	s machine�dependent code

thereby decreasing the size of the operating system and the amount of time required to port the
system to a new system architecture� The generic structure of the new Mach device drivers allows us
to wean ourselves from the vendor�supplied drivers
 thereby reducing the amount of vendor�owned
code in our system� Moreover
 maintenance of the system is greatly simpli
ed because changes to
the I�O system
 for example to increase performance
 need only be applied to each class of device

not to each device for each processor architecture for each system�

Real�Time

A second problem with earlier versions of the I�O system was that it was designed to run entirely in
kernel mode
 generally at high priority in ignorance of other scheduling requirements� This ignorance
was because the drivers were often supplied by vendors in the context of a bundled UNIX kernel

which itself has no support for Real�Time computing� The Mach kernel
 though
 does provide for
Real�Time support
 so it is necessary to bound the amount of time spent within kernel interrupt
handlers down to the �negligible� range�

User�level device management reduces the amount of code that runs in privileged kernel mode

and increases the predictability of the kernel	s scheduling algorithms�

High�Performance I�O Devices

While I�O systems of the last �� years have been measured in megabits per second
 those of the
next decade are likely to have data transfer rates on the order of gigabits per second� High�speed
networks
 which can provide data at this rate
 and multimedia applications
 which can similarly
consume data
 are two obvious forcing functions pushing on software architectures to support high�
performance I�O�

The in�kernel drivers in previous versions of Mach acted not only as device controllers
 but also
as data bu�ers� This meant that data would be ferried across the user�kernel boundary as it passed



between the application and the device� For low�performance I�O devices
 such as SCSI disks

the additional data transfer time was not important� But
 for high�bandwidth applications
 it was
necessary to reduce the length of the I�O path�

User�level drivers can provide for increased I�O performance because it is possible to avoid
expensive data copies �either physical or virtual� between user and kernel space� Data can instead
�ow directly between the application and the device� This can be done by mapping the device
directly into an application	s address space
 just as is done with display devices for graphics�based
workstations� Where architecturally possible
 the Mach ��� kernel allows an application to map a
hardware device into its address space�

Location Transparency

While being able to access devices from user�level solves one set of problems
 it has the potential to
introduce another� It is important to us that we be able to control a device from any machine
 not
just from the one to which the device is attached� For this reason
 we have designed an IPC�based
device interface
 rather than one based on kernel traps
 allowing us to implement remote device
driver management� As is customary in message�passing kernels
 the device is viewed as a server
to which client programs make remote procedure calls �RPC�� This ability is critical on �NORMA�
�No Remote Memory Access� multiprocessors
 in which each processor runs its own instance of the
Mach kernel �Barrera ���� For example
 on the Hypercube
 we can run the UNIX server on a fast
i��� processor and have it drive a SCSI controller attached to a slower i��� processor�

���� Some Problems We Weren�t Trying To Solve

While designing the I�O interface for Mach ��� another thing was quite clear� the user of such inter�
face was not going to be a 
nal user application program
 but rather an operating system server such
as a 
lesystem or protocol server� Therefore we have made no attempt to masquerade I�O devices
as 
les or any other �uniform� programming abstraction on the basis that i�� such a uniformity
 if
desired
 should be provided at a higher level
 and ii�� providing it at the device level creates unnec�
essary problems for the many di�erent types of servers that would use the interface� In particular

the Mach kernel is intended to support a variety of di�erent operating system environments
 such
as BSD UNIX �Golub et al� ���
 MS�DOS �Rashid et al� ���
 and MacOS
 each one exporting its
own device abstraction� Our approach allows servers for these operating systems to implement their
abstractions at the lowest possible level�

The rest of this paper is structured as follows� In Section � we describe the structure of our device
independent device drivers� In Section � we discuss user�level device management� In Section � we
brie�y describe the IPC�based I�O interface� In Section � we discuss some crucial aspects of the
performance of the new I�O system� In Section � we brie�y discuss some related work� Finally
 we
discuss the system	s current status�

�� Device Independent Device Drivers

Early versions of Mach have used pre�existing BSD UNIX device drivers with minor modi
cations
which adapt them to the Mach	s virtual memory and thread management systems� These drivers
typically come from the machine	s vendor
 and are therefore di�erent across di�erent vendors� Nev�
ertheless
 there is much in common both across hardware devices and across the software that drives



them�

The basic observation that led us in the design of a new implementation paradigm is that hard�
ware devices
 especially in the case of workstations
 are built with o��the�shelf components
 such
as video RAMDAC chips
 serial line UARTs
 SCSI controllers
 Ethernet controllers and so on� Al�
though each chip behaves di�erently
 within a class of devices all chips basically perform the same
set of functions� For example
 every video controller chip has the ability to move the cursor
 and
every serial line controller chip can be instructed to set speed and parity� Identifying those common
functions and encapsulating them at the bottom of a class�like hierarchy produces a system where
the code for one chip can be easily replaced by the code for a di�erent one� Not only does this
enhance portability
 but it allows us to easily integrate new and better versions of chips as they
become available over time�

By creating classi
cations for devices
 and then identifying the chip�dependent interface for each
class
 we are able to write device drivers that are largely independent of the actual make and model
of the piece of hardware that they are driving� Instead of character and block devices we now have
a set of functionally grouped device drivers including the screen
 console
 disk
 tape
 serial line
 and
Ethernet� Each driver has one or more layers of chip�independent code
 which provides both the
external interface and implements the logic behind the workings of the device driver itself� Only
simple
 core functions at the bottom level deal with the hardware directly� Portability and code
sharing are greatly increased by this structure� There is no need
 for example
 to rewrite the code
which drives a previously handled SCSI when porting to a new machine that uses a new processor
from a new vendor�

Our approach to device independent device management is similar to the one used in Mach	s
machine�independent VM interface �pmap module� to the various Memory Management Units
�MMU� �Rashid et al� ���� The pmap layer encapsulates MMU dependencies beneath the bulk
of the VM system� This greatly increases portability
 because only the pmap layer needs to be
changed for a new architecture
 and code sharing
 because much of the pmap layer is constant across
similar MMUs�

In the rest of this section
 we describe the structure of each of the major device classes supported
in Mach ����

���� The Serial Line Driver

Serial lines and their drivers are among the oldest components of UNIX	s I�O system� The chips
in use today
 for example
 are essentially the same as those that were available ten years ago�
Nevertheless
 on the software side
 each system vendor has supplied its own version of the serial line
driver
 but they all derive from the original code written at AT�T �Ritchie and Thompson ���� This
situation creates unnecessary code duplication� In addition
 we have seen several cases where the
same UNIX ioctl is encoded di�erently because the ioctl interface has semantics that can be speci
c
to device drivers� Since this interface is visible to applications
 the proliferation of �similar but not
quite the same� device drivers has created binary compatibility problems for us�

The Mach ��� serial line driver is split into a device independent component and a small device
�chip� dependent part� The device independent component deals with character bu�ering
 and all
console�related code including�

� open�close�read�write functions


� start�stop operations


� modem controls




� interrupt handlers for the simple case of devices that work on a one�interrupt�per�character
basis�

� send�receive of characters in polling mode to the system console for debugging and error
messages


� switch code for the bitmap driver �mouse and console callouts�


� 
nding the appropriate console line in a generic kernel


The chip�dependent layer implements only those operations that manipulate the device registers
directly� These include probing for existence
 setting of speed
 parity and modem control
 and
moving characters on and o� the chip�

���� The Screen Driver

The portions of code that are shared across all screen devices are the terminal emulator
 fonts
 screen
saver
 interface routines such as open�close�read�write
 event handling logic for both motion and
keypress events
 and other status control operations such as controlling the screen saver and the
cursor position�

Code that is speci
c to each screen device controls probing
 noti
cation of open�close opera�
tions
 character painting at a given location
 scrolling
 cursor motion
 video on�o� and blanking

enabling�disabling of vertical�retrace interrupts
 and returning the physical address of registers for
user space mapping� Even at the lower level
 which is chip�speci
c
 we have been able to share
some code across devices� For example
 all displays based on framebu�ers share the same code for
painting characters and scrolling text�

Separate from the screen module
 but logically part of the same driver are the drivers for the
keyboard and mouse� These are structured as devices in their own right
 but are only invoked from
the serial line or screen drivers and not by general user applications� The keyboard driver remaps
the keyboard	s keycodes into ascii characters for the terminal emulation task� The mouse driver
repacks bytes from the mouse into coordinates and mouse�tablet button keypresses� Device speci
c
components handle the format of the mouse reports and the keycode translation tables�

���� The SCSI Driver

Most current workstations provide a single SCSI interface for accessing mass�storage devices such
as disks and tapes through a common transport layer�

Our new SCSI driver has three layers� The upper one is speci
c to each of the major devices
de
ned in the SCSI�� standard� The code at this layer handles the queueing of requests
 tape
read errors
 bad blocks
 disk labels and so on� This layer is implemented as a common source

le for open�close�read�write functions and a switch into device�type speci
c functions for extra
open�close�start�restart operations� Common open�time operations include
 for instance
 dynami�
cally probing a yet�unseen target
 and bringing the target online and locking it if it contains remov�
able media� Speci
c operations for a disk include setting the logical block size
 and reading the size
and geometry of the disk� Specialized functions
 such as disk formatting and bad block scanning

are also exported at this layer�

The second layer de
nes the encoding of commands into SCSI messages
 but also includes other
utilities such as a watchdog to recognize a hung SCSI bus
 data structure allocation and initialization
code
 and the de
nition of the per�target status record�



The bottommost layer handles the hardware proper and only has two interface functions� one to
probe
 and one to start a SCSI command� There is only one single upcall from this layer
 to notify
completion of a SCSI command and start the next one for the same device�

A Methodology for Handling SCSI Chips

SCSI chips typically require several interrupts per transaction
 therefore it is important to dismiss the
interrupts quickly� Some of the older SCSI chips
 for example
 require between � and �� interrupts
per disk read and write operation� We have structured our SCSI chip module as a set of �scripts
�
which are a list of condition�action pairs� One script might cover all SCSI commands that needs
to receive data from the device
 another one for transfers in the opposite direction� The condition
encodes a possible value from the status registers
 and the action is a function pointer� At interrupt
time
 the status registers are compared against the condition� If they match
 the action routine
is invoked� Otherwise
 control transfers to an error handler associated with the script� At each
interrupt
 the anticipated condition�action pair is advanced to the next entry in the script until
the command completes� For example
 disconnections are handled as errors in the processing of a
regular
 non�disconnecting script� The script pointer is simply saved in the target device	s status
record and restored later when the target reconnects�

Our use of scripts
 which draws on the design of the NCR ��C���
 simpli
es the writing of
the chip�speci
c code by allowing us to use a single generic control module� Only scripts
 action
functions
 and error handlers need to be written for each new SCSI chip� The more sophisticated
SCSI boards
 which include a processor
 memory and other logic
 do not require scripts because they
are capable of handling most of the protocol details on their own�

Pushing Harder on SCSI

SCSI is a �exible model for device management � nearly any device can be interfaced via SCSI� In
Mach ���
 we need only write a small amount of machine�independent code to make a new device
accessible across all machines� For example
 we have connected two machines via a SCSI cable

much like we do with Ethernets
 inventing a �host� device that can be used just like an Ethernet�
This required only �� lines of new machine�independent code
 and the sharing of another ��� lines
with the tape driver� We were able to use the existing structure to handle all of the SCSI nuances�
Handling of a CD�ROM only required adding two lines of C code to the existing disk driver to
prevent the issuing of write requests� We have dual�mounted the same disk on a DECstation ����
and a IBM PC with only one additional line of code in the existing DS���� adapter module�

���� The Ethernet Driver

The Mach ��� I�O system includes support for only one Ethernet driver based on the Lance chip
controller� As most machines use this chip
 we have not had much incentive to factor out code com�
mon to other Ethernet controller chips� Nevertheless
 in importing Ethernet drivers from vendors

we have observed a �cloning� syndrome similar to that for other device drivers �which drive di�erent
chips�� Our Lance driver is used on four di�erent workstations� The driver copes with a variety of
minor system dependencies through the use of callouts to machine�dependent functions that handle
the movement of data in and out of the Lance	s memory
 and for translating a host address into a
physical address usable by the Lance chip� Most of the system dependencies are due to the di�erent
ways in which the Lance handles DMA across di�erent platforms�

The bulk of the machine independent code in the network driver deals with more general issues



such as allocating and deallocating IPC bu�ers
 delivering messages to users
 and using the packet

lter �Mogul et al� ���� This code is common to all Ethernet drivers and can be generalized to any
network interface�

�� User�Level Device Management

Devices can be managed from user�level by vectoring all device interrupts out to an application	s
thread� The kernel maps to user space the device	s registers
 a shared page containing some control
information
 and some memory for handling DMA to�from the device� When an interrupt comes
 a
small interrupt routine� saves any volatile register state in the shared page for later use by the user
code
 and then dismisses the interrupt
 typically by disabling the interrupt enable bit in the device

or by reading an �interrupt�acknowledge� register� When the user thread runs it just invokes the
driver	s interrupt routine as if it were handling the interrupt in kernel�mode� After all necessary
processing
 the thread then re�enables interrupts in the device�

Our approach to user�level device management allows us to reuse existing kernel�mode drivers
to a large extent
 even though they run in user�mode� We have generally been able to run a kernel�
mode driver in user�mode by providing some simple �sca�olding� for facilities that are normally
present in the kernel
 such as priority emulation and memory allocation
 but not normally present
in a user�level application� The only synchronization required for user�level device management is
between the kernel	s interrupt handler and the application thread� Presently
 we use Mach	s general
thread suspend �from user�mode� and thread resume �from kernel�mode� primitives�

The small interrupt routine that vectors hardware interrupts to threads can be loaded in the
kernel either dynamically or statically� Presently
 we do it statically at link time
 although we could
provide a server that does dynamic linking and downloading in kernel space using the system	s VM
primitives
 as is done on the NeXT� The interrupt routine only needs to invoke one kernel function
to wake up the interrupt thread�

We should note that our user�level strategy scheme only requires one dedicated thread per device�
It does not actually dictate whether this thread runs in user or kernel mode� Indeed on certain
architectures
 where mapping device registers is not possible
 it might be mandatory that the thread
runs in privileged mode�

Presently
 we are running with user�level drivers for the Ethernet and the SCSI disk� The
Ethernet driver was the 
rst user�level driver we wrote
 and is in fact the same custom driver �see
Section �� that 
rst ran in the kernel� Our main motivation for moving the driver out of the kernel
was our dissatisfaction with the performance of the in�kernel driver� By mapping the driver directly
into the UNIX server	s address space where the network protocols are implemented
 we avoid one
extra copy of the data
 almost doubling the speed relative to earlier versions of Mach ���� In fact

current network performance for throughput intensive applications
 such as FTP
 is about the same
as that for Mach ���
 which implements UNIX in kernel space�

For the SCSI driver
 we initially used the vendor	s code directly on a DECstation ����
 and only
later moved on to our own device independent machinery described earlier� We did this in order to
assess the impact
 in terms of performance and programmability
 of moving existing
 mature drivers
out of the kernel would have� Performance is discussed in Section �� In terms of programming

we were pleased to discover that the e�ect was minimal
 and was all concentrated on the interface
between the driver and the sca�olding code
 not between the driver and the device� In fact
 during
our initial port
 we didn	t try to understand much of the code in the vendor	s original driver � it
wasn	t necessary�

�For example� on the MIPS architecture� the routine is ��� bytes�



�� I�O Interface

The I�O interface is de
ned in a language�independent MiG de
nition 
le and consists of the fol�
lowing remote procedure calls�

device open	 master device port
 mode
 name
 device � Open procedure
 returns a device port

device close	 device � Close procedure�

device write	 device
 mode
 recnum
 data
 num bytes
 bytes written � Write procedure
 returns
the number of bytes actually written�

device read	 device
 mode
 recnum
 bytes wanted
 data
 bytes read � Read procedure
 returns the
data and the amount of bytes read� Reply can be asynchronous�

device map	 device
 protection
 o�set
 size
 pager
 unmap � Map procedure
 returns a port pager
for mapping to user space
 usable with vm map���

device set status	 device
 �avor
 status � Change the device status
 device�speci
c�

device get status	 device
 �avor
 status � Inquiry the device status
 device�speci
c�

Device names are strings
 and are system�speci
c� Our convention is to use an alphabetic string
followed by an optional decimal number which identi
es di�erent instances of similar devices� Record
numbers are interpreted in a device�speci
c manner� a disk uses this unsigned index to point to a
physical block
 while a serial line just ignores it� Read and write operations can either return data
inline or out�of�line� For devices that return data asynchronously
 like the Ethernet
 for example

a read call can be split in the request and reply sides
 possibly with a di�erent thread dequeueing
replies� Operations on the status of a device
 such as modem control operations on a serial line for
instance
 are very much device�speci
c�

Note that any entity that abides by this interface quali
es as a Mach device
 whether it is
implemented inside or outside of the kernel� The same interface is exported by the kernel for the
devices it handles itself
 therefore a user application will see no di�erence whether the driver is
implemented in the kernel or in a user process� It is conceivable that a user�space driver could
export some other interface
 perhaps shared memory based
 to other tasks on the same machine�
Indeed
 the current prototype
 in which the SCSI driver is in the same task as default pager �Golub
� Draves ���
 exports the disk to the UNIX server via the RPC interface and to the default pager
via local function calls�

It	s important to note that Mach	s support for distributed shared memory �Forin et al� ��� does
not enable remote mappings of the chip	s registers because devices do not access their registers
through the memory management unit �MMU��

For devices that are implemented inside the kernel we provide a layer of code that handles VM
and scheduling� At this level
 we wire pages that are used to move data between user and kernel
space� We also use the page�list technique
 described in �Barrera ���
 to speed up the paths through
the VM code�

Scheduling issues are also handled here� Each device�speci
c function returns a code indicating
whether the operation requested was able to complete
 or was queued for later processing� If queued

the address of a completion function is noted in the request record� When the request has been
handled
 the driver	s interrupt routine causes the completion function to be executed within the
context of a kernel�mode thread� For example
 in the case of a device write
 the completion function
deallocates memory and sends back a simple reply message to the writer with the a completion code
indicating success or failure�



�� Performance

We consider two performance measurements for the new I�O system� The 
rst is in terms of the
reduction in size of device driver code� This is primarily a function of the new device independent
drivers� The second measurement is in terms of performance� that is
 how fast can data be pushed
through the I�O system�

���� Size Considerations

We have observed
 on average
 a factor of two reduction in the size of device drivers relative to those
provided by vendors� Moreover
 our new drivers often include additional functionality� The screen
driver
 for instance
 is one fourth the size �MIPS object code� of that shipped by the vendor
 and
now includes a terminal emulator� The extra code needed to support a hi�resolution screen required
only �KB of object code
 compared to over ��KB if the new driver were cloned from an existing
one �as is the standard practice�� The chip�dependent code in the serial line driver takes about �KB
for each of the two chips we currently support� The support code for the NCR ��C�� SCSI chip is
about ��KB
 half the size of the vendor	s chip�speci
c code� The most complicated SCSI chip so far
needs about ��KB of MIPS object code� The simplest one is about �KB of Intel ��� object code�

The machine�independent code is also compact� For example
 the machine�independent code to
support all of the SCSI tapes is about �KB� The total size of the Lance driver for four machines
is less than �KB� The size of the machine�independent code for the entire I�O system in a generic
DECstation con
guration is ���KB�

The strictly machine�dependent device code is less than �KB
 and all of that is for handling
DMA� Moreover
 all of code is written in C� The remaining machine�dependent code in the system is
��KB
 including ��KB of debugger support code and ��KB of �oating point emulation code� Table �
summarizes these numbers and shows that the new I�O system is signi
cantly �less� machine�
dependent �and therefore more portable� than other components in the system�

DECstation MK�� Generic Kernel

Component Size �KB� �
MI I�O ��� ����
MD I�O � ���
MI other code ��� ����
MD other code �� ����
Total MI ��� ����
Total MD �� ����

Table �� Maximum Kernel Object Code Sizes�

���� Speed Considerations

Our new drivers perform no worse than those that they replace� In some cases
 performance is even
improved because of the mapped devices and the generic script facilities which allow us to rapidly
dismiss anticipated interrupts�



The Screen and Serial Drivers

For the screen and serial drivers
 there are no observable performance di�erences between our new
drivers and the vendor	s� In the case of the screen driver
 this is because the vendor	s driver
was already mapped into user space
 and because the kernel resident code has little impact on
performance� In the case of the serial driver
 it	s because measuring performance di�erences at the
slow speeds of ���� or ����� baud �typically the maximum rate for serial lines� is di�cult�

The Ethernet Driver

For the Ethernet driver
 we measured substantial performance improvements over the vendor	s
original driver� For example
 an FTP using the same ��� BSD network code �pre Van Jacobsen�
between two DECstation ����s went from ���KB�sec to ���KB�sec�

The SCSI Driver

Initially
 we measured the performance of an out�of�kernel SCSI disk driver which was identical
to the vendor	s original in�kernel driver� That is
 we did not measure the impact that �device
independence� had on the performance of the SCSI driver� We discovered that the in�kernel and
out�of�kernel drivers performed similarly� The additional cost of having to dispatch a device interrupt
out to user�level was insigni
cant compared to the long seek and rotational delays associated with
disks �the average delay we saw was about �� ms across a number of SCSI disks��

We next measured the impact that our device independent approach had on performance by
replacing the vendor	s driver �at user�level� with our own� On a DECstation ����
 we saw the
maximum disk throughput improve from ���KB�sec to ���KB�sec with our new driver�� The
throughput here was limited by a slow disk� We then replaced the disk with a faster one
 and
measured throughput of ����MB�sec
 which is the maximum rate at which data can be moved
between the SCSI bu�er and the processor	s main memory�

The SCSI driver is a particularly challenging case because of the large number of interrupts
required to perform commondevice functions� We were clearly adding some overhead to the interrupt
path� Because many SCSI devices tend to generate many interrupts per hardware operation
 we
were concerned that extensive coding changes would be required to get good performance� As the
performance numbers demonstrate
 this turned out not to be the case�


� Some Observations about I�O Systems

This investigation of the I�O subsystem was originally just motivated by the need of doing a clean

free
 reference port of Mach ��� to one of the many possible workstations on the market� The

ndings of the process
 and past experiences in porting Mach to the many machines we ported it to
are intriguing enough to prompt some more general re�ections�

�In order to measure maximum throughput� we wrote a carefully tuned �le�reading program that does reads out
of order to maximize �hits� on the sector�s location�




��� Horror Stories

Cutting the Wrong Corners

Economy is the foremost rule that has driven the design of current workstations� The results are
oftentimes detrimental to performance� Most workstation manufacturers choose to include only a
a cheap
 dumb SCSI chip rather than a smart
 more expensive SCSI board� This means anywhere
between � and �� interrupts to the CPU per �disconnecting� disk read or write operation� As an
extreme case
 we have seen an early SCSI disk disconnect on each and every sector transferred� This
required ���� �!�� interrupts to read an �KB disk block� We changed our SCSI driver to optionally
disable disconnections for selected targets
 but such work�arounds should not be necessary�

As another example
 we have ported Mach to a multiprocessor which was built without any
DMA support for disk I�O� The idea was that a multiprocessor machine can probably waste one
processor in dealing exclusively with I�O� The CPU in this case must pick each individual byte out
of the SCSI chip
 just like a serial line� Unfortunately
 the particular SCSI chip chosen would run �
times faster in synchronous mode � a mode that necessitates a true DMA path to memory�

Balancing Costs

Many customers are willing to pay extra money for faster and color displays� This has generated
a variety of solutions and o�erings
 often concealing important economic and performance consid�
erations� Many users 
nd it hard to understand why a high performance color machine should be
slower at scrolling screen text than a monochrome one� At least some of the e�orts in designing
graphic accelerators
 for example
 should go into including higher speed screen memory� Moreover

it makes little sense to attach a slow graphics I�O processor to a fast CPU�

Delivering Promised Function

Another area where we hit many obstacles is the one of DMA� Any DMA device that cannot be used
to access each and every byte at any physical address creates a software problem which can only be
solved by data copies that slow down the machine� This is even more of a problem considering that
with today	s CPUs
 memory is often the bottleneck� We have seen machines that can only DMA
two good bytes every other two bytes
 some that can only use a good byte every four �and not byte
zero�
 and some that get a good �� bytes in a row
 but only every other �� bytes� In other instances

the DMA is �normal
� but the mapping between physical address and address to be used by the
DMA chip is incredibly complicated� DMA chips which can address as much as the CPU can are
rare�

Caches

A big cache helps with the performance of user applications
 but is less helpful for the operating
system �Ousterhout ���� As for the I�O system
 a machine with a DMA chip is essentially a mul�
tiprocessor with cache coherency problems which should not be overlooked� If the cache does not
snoop the bus
 it is necessary to factor into each I�O operation the cost of �ushing the cache
 which
on many machines is not a trivial one
 not even for a relatively small address range such as a page
size� The cost of �ushing can be as high as ��� of the entire page fault cost� In Mach
 we can
somehow help by avoiding the instruction cache �ush for pages that are not mapped �by the user�



with execute permission
 as we do on the MIPS architecture for instance� This only mitigates the
problem
 and only in the case of separated instruction and data caches�


��� Suggestions

An I�O system that performs in the gigabyte throughput range will require radical departures from
today	s practices� High bandwidth will only be possible with large grain data transfers
 e�ective
bu�ering and memorymapping techniques� This is only possible if hardware and software cooperate�

It is important to handle more than one transaction per interrupt because interrupts have a
bad e�ect on cache and CPU �pipeline� performance� High�performance I�O systems will have to
reduce the number of interrupts required to handle data transfer� Otherwise
 tomorrow	s faster
CPUs will spend all their time handling one network packet at a time
 just as they do today with
serial lines� Large data transfers are possible because main memories are large enough to hold data
in anticipation of it being used
 and modern virtual memory systems are able to e�ectively cache
the data�

Given our experiences with with user mode drivers
 we can consider other uses of memory
mapping techniques that improve performance� Consider
 for instance
 a machine where each device
is accessible as a separate memory bank on the main memory bus� This large piece of dual�ported
memory is where the operating system server allocates bu�ers used for I�O� This structure gains
two advantages� First
 the bus is used only for CPU transactions since devices DMA to their local
memory� Second
 the copy of data in and out of application space is made by using mapped 
le
techniques �Golub et al� ��� only once and in large chunks� This copy eliminates the need for data
cache �ushes
 because the source data can be marked as non�cacheable�

An I�O interface di�erent from that of UNIX would avoid even this one copy� Many other
operating systems have successfully used such a bu�er �reserve�
ll�release� strategy�

An alternative setup is one where the interface between the main CPU and an I�O device is in
terms of an external pager interface itself� The device itself is the external pager and interacts with
the main CPU in terms of pagein�pageout requests in a fault�driven fashion� This is a generalization
of our work on shared memory servers �Forin et al� ���� The di�erence now is that instead of only
dealing with �communication� issues we also deal with �permanent storage� and data retrieval
issues� If the memory mapping is between two hosts
 then we have a distributed shared memory
semantics� If the mapping is between a host and a peripheral device �disk
 tape
 printer
 scanner�

then we will either retrieve data �read fault� from the device or write it to the device �write fault��
By mapping
 the host communicates to the device the data it wants to address �e�g� what disk
blocks�� By faulting
 the host signi
es that the transfer should take place� In this way
 we can
use lazy evaluation to drive I�O devices� The device now has the advantage of being able to make
decisions of its own as to what stays in the main memory and what doesn	t� It can
 for instance

remove access to a page just because it is convenient to write it out at that particular point in time

or it can prefetch data and supply it to the kernel in anticipation of an upcoming need�

�� Related Work

Other systems use some of the same techniques for I�O management that we have used in Mach ����
Jim Gettys �Gettys ��� has recently rewritten the screen driver for Ultrix by factoring the code into
chip�speci
c modules and generic code� In Sprite �Ousterhout et al� ���
 device drivers are structured
like ours � functionally specialized into much the same set
 although the implementation does not
stress chip�speci
city as much as Mach	s� An experimental version of UNIX based on a micro�kernel
done at DEC ran with device drivers in user�space �Palmer � Palmer ����



�� Current Status

The work described here has been a developing part of the Mach ��� kernel since the middle of
����� We invite the interested reader to obtain a copy of Mach ��� by way of anonymous FTP to
CS�CMU�EDU�

The device independent serial driver has been ported to two chips �DEC DZ���� and Zilog �����
on three machines� The screen driver currently handles two monochrome and 
ve color display
types
 and is used on two workstation types �VAX and MIPS based�� Other ports are under way�

The SCSI driver has been ported to four di�erent workstation types �VAX
 MIPS
 I���
 M��k�
and handles 
ve di�erent SCSI controllers ranging from the 
rst�generation NCR ���� to the second�
generation NCR ��C�� to the user�friendly Adaptec ����� Others
 outside of CMU
 are using these
drivers for Mach ports to other systems�

The user�level Ethernet driver has been in use now for almost two years on three versions of
the DECstation �����
 ���� and ��������� with a fourth one just completed ���������� and a 
fth
one underway �Omron Luna ��k�� It is distributed as part of the single�server UNIX emulator from
CMU�

References

�Barrera ��� Barrera
 J� S� A Fast Mach Network IPC Implementation� In Proceedings of the Second
USENIX Mach Symposium
 This issue
 November �����

�Barrera ��� Barrera
 J� S� Operating System Support for Multicomputers� PhD dissertation
 School
of Computer Science
 Carnegie Mellon University
 To be completed in �����

�Forin et al� ��� Forin
 A�
 Barrera
 J�
 Young
 M�
 and Rashid
 R� Design
 Implementation and
Performance Evaluation of a Distributed Shared Memory Server for Mach� In ���� Winter
Usenix
 January �����

�Gettys ��� Gettys
 J� E"mail communication posted on the mach� mailing list
 July �����

�Golub � Draves ��� Golub
 D� and Draves
 R� Moving the Default Memory Manager Out of the
Mach Kernel� In Proceedings of the Second USENIX Mach Symposium
 This issue
 Novem�
ber �����

�Golub et al� ��� Golub
 D�
 Dean
 R�
 Forin
 A�
 and Rashid
 R� Unix as an Application Program�
In Proceedings of the Summer ���� USENIX Conference
 pages ��"��
 June �����

�Mogul et al� ��� Mogul
 J�
 Rashid
 R�
 Accetta
 M� The Packet Filter� An E�cient Mechanism for
User�level Network Code� In Proceedings of the ��th Symposium on Operating Systems
Principles
 pages ��"��
 �����

�Ousterhout et al� ��� Ousterhout
 J�
 Cherenson
 A�
 Douglis
 F� The Sprite Network Operating
System In IEEE Computer� Vol 	�
	
 pages ��"��
 February �����

�Ousterhout ��� Ousterhout
 J� Why Aren	t Operating Systems Getting Faster As Fast As Hard�
ware# In Proceedings of the Summer ���� USENIX Conference
 June �����

�Palmer � Palmer ��� Palmer
 R�
 Palmer
 L� Informal Communication at the First OSF Kernel
Developers Meeting
 Cambridge
 September �����

�Rashid et al� ��� Rashid
 R�
 Baron
 R�
 Forin
 A�
 Golub
 D�
 Jones
 M�
 Julin
 D�
 Orr
 D�
 Sanzi

R� Mach� A Foundation for Open Systems� In Proceedings of the Second IEEE Workshop
on Workstation Operating Systems
 page ���"���
 September �����



�Rashid et al� ��� Rashid
 R�
 Tevanian
 Jr�
 A�
 Young
 M�
 Golub
 D�
 Baron
 R�
 Black
 D�

Bolosky
 W�
 and Chew
 J� Machine�Independent Virtual Memory Management for Paged
Uniprocessor and Multiprocessor Architectures� In Proceedings of the 	nd Symposium on
Architectural Support for Programming Languages and Operating Systems
 April �����

�Rashid et al� ��� Rashid
 R�
 Malan
 G�
 Golub
 D�
 and Baron
 R� DOS as a Mach ��� Application�
In Proceedings of the Second USENIX Mach Symposium
 This issue
 November �����

�Ritchie and Thompson ��� Ritchie
 D�
 Thompson
 K� The UNIX time�sharing system� In Bell
System Technical Journal
 July �����

�Tokuda � Nakajima��� Tokuda
 H�
 Nakajima
 T� Evaluation of Real�Time Synchronization in
Real�Time Mach� In Proceedings of the Second USENIX Mach Symposium
 This issue

November �����


